Quantum correlation and classical correlation dynamics in the spin-boson model
نویسندگان
چکیده
منابع مشابه
Quantum Dynamics in Classical Time Evolution of Correlation Functions
The time-dependence of correlation functions under the influence of classical equations of motion is described by an exact evolution equation. For conservative systems thermodynamic equilibrium is a fixed point of these equations. We show that this fixed point is not universally stable, since infinitely many conserved correlation functions obstruct the approach to equilibrium. Equilibrium can t...
متن کاملQuantum correlation functions and the classical limit
We study the transition from the full quantum mechanical description of physical systems to an approximate classical stochastic one. Our main tool is the identification of the closed-time-path (CTP) generating functional of Schwinger and Keldysh with the decoherence functional of the consistent histories approach. Given a degree of coarse-graining in which interferences are negligible, we can e...
متن کاملQuantum phase transitions in the sub-Ohmic spin-boson model: failure of the quantum-classical mapping.
The effective theories for many quantum phase transitions can be mapped onto those of classical transitions. Here we show that the naive mapping fails for the sub-Ohmic spin-boson model which describes a two-level system coupled to a bosonic bath with power-law spectral density, J(omega) proportional, variantomega(s). Using an epsilon expansion we prove that this model has a quantum transition ...
متن کاملQuantum correlation without classical correlations.
We show that genuine multiparty quantum correlations can exist on its own, without a supporting background of genuine multiparty classical correlations, even in macroscopic systems. Such possibilities can have important implications in the physics of quantum information and phase transitions.
متن کاملQuantum-classical limit of quantum correlation functions.
A quantum-classical limit of the canonical equilibrium time correlation function for a quantum system is derived. The quantum-classical limit for the dynamics is obtained for quantum systems comprising a subsystem of light particles in a bath of heavy quantum particles. In this limit the time evolution of operators is determined by a quantum-classical Liouville operator, but the full equilibriu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2010
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.81.064103